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ABSTRACT

We have developed embedded boundary methods to handle
arbitrarily shaped topography to accurately simulate acoustic
seismic wave propagation in the Laplace-Fourier domain.
The purpose is to use this method to enhance accurate wave
simulation near the surface. Unlike most existing methods
such as the ones using curvilinear grids to fit irregular surface
topography, we use a regular Cartesian grid system without
suffering from the staircasing error that occurs in conventional
implementations. In this improved embedded-boundary
method, we use the method of images, by imposing ghost
nodes above the surface and approximating their acoustic
pressures using linear extrapolation, quadratic interpolation,
or cubic interpolation, to account for an arbitrarily curved sur-
face. Implementing this method instead of using curvilinear
grids near the boundaries greatly reduces the complexity of
preprocessing procedures and the computational cost. Fur-
thermore, using numerical examples, we found the accuracy
gain and performance of our embedded-boundary methods in
comparison with conventional finite-difference implementa-
tion of the problem.

INTRODUCTION

In acoustic seismic modeling, the objective is to describe the
propagation of waves through the earth. Here, we consider wave
propagation that is solved in the Laplace-Fourier domain. We start
by discretizing the 3D wave equation on a Cartesian grid
xi;j;k ¼ ðih; jh; khÞ in space, where h > 0 is the grid size. We let
the Laplace frequency be complex valued s ¼ σ þ iω consisting

of a Laplace damping factor σ and the angular frequency ω. The
solution to the forward problem is gained by using a single fre-
quency for a 3D acoustic-wave simulation (Hustedt et al., 2004).
It is reduced from the 3D elastic wavefield simulator developed
by Petrov and Newman (2012).
Special attention to the numerical treatment of the free-surface

boundary for topography is deserved because it does not follow
naturally from a Cartesian grid. For acoustic forward modeling, sec-
ond-order finite-difference methods do not implicitly satisfy the
free-surface condition as is the case with finite-element methods.
Accurately implementing the free-surface condition on an irregular
interface is difficult due to the nonlocal nature of the finite-differ-
ence schemes. This implies that acoustic velocities above the free
surface are required to compute the pressure at or immediately be-
low the surface (Fichtner, 2011).
A straightforward approach for the implementation of the free

surface is to set the acoustic parameters at and above the free surface
to zero. The method is commonly referred to as vacuum formulation
or the staircase method. The free-surface boundary condition is thus
not treated explicitly; instead, it is assumed to be implicitly fulfilled.
Staircase-method applications can be found in Zahradník and Urban
(1984), Zahradník et al. (1993), and Ohminato and Chouet (1997).
The method is attractive because of its trivial implementation and
the possibility to model topography. Bohlen and Saenger (2006)
conclude that to model topography with a staircase method, more
than 60 grid points per minimum wavelength are required in a sec-
ond-order scheme to obtain acceptable results.
Another solution is the curvilinear method that transforms the

velocity-pressure formulation system of equations from a curved
to a rectangular grid (Tessmer et al., 1992; Tessmer and Kosloff,
1994; Hestholm, 1999; Hestholm and Ruud, 2000). At the free sur-
face, the pressure and velocities are transformed into local systems
in which the vertical coordinate axis is parallel to the normal of
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the local surface element. The free-surface conditions are then
implemented by a “characteristic” treatment of the velocity and
pressure components, before they are rotated back to the original
system. More recent studies applied the embedded-boundary con-
dition for a 2D finite-difference solution of the wave equation with
success (Kreiss and Petersson, 2006; Li et al., 2010). The studies
applied the embedded-boundary method to 2D frequency- and time-
domain modeling problems. They investigate quadratic interpola-
tion when computing the pressure above the free surface.
This paper describes an embedded-boundary method for the 3D

acoustic-wave equation with an irregular free-surface boundary on a
Cartesian grid. By computing the pressure on either side of the inter-
face, we can satisfy a zero acoustic pressure at the free surface,
yielding superior results compared with conventional implementa-
tions that model topography as a staircase approximation.

ACOUSTIC-WAVE EQUATION FORWARD
MODELING IN LAPLACE-FOURIER DOMAIN

Frequency-domain modeling of wave propagation inside the
earth has been studied extensively (see Lysmer and Drake, 1972;
Marfurt, 1984; Zahradník and Urban, 1984; Pratt and Worthington,
1990; Jo et al., 1996; Štekl and Pratt, 1998; Hustedt et al., 2004;
Operto et al., 2007). Most of the methods that have been developed
for wave modeling in the frequency domain are based on solving the
acoustic-wave equation by the finite-difference method: On a uni-
form grid, the finite-difference methods provide an excellent com-
promise between accuracy and computational efficiency.
We consider the first-order hyperbolic system in a velocity-

pressure formulation in the Laplace-Fourier domain, which can
be derived from Petrov and Newman (2012). Let the 3D isotropic
acoustic medium with density ρ and incompressibility κ occupy re-
gion Ω. The equations of motion inside Ω are given by

sρvx ¼ ∂xP;

sρvy ¼ ∂yP;

sρvz ¼ ∂zP;

sP ¼ κ½∂xvx þ ∂yvy þ ∂zvz� þ sm; (1)

where s is the complex number given by σ þ iω, σ is the Laplace
damping factor, ω is the angular frequency, and i ¼ ffiffiffiffiffiffi

−1
p

.

The velocities vx, vy, and vz are the velocity wavefield components;
P is the acoustic pressure; m is the seismic moment density tensor;
and the symbols ∂x, ∂y, and ∂z denote the partial differential
operators ∂∕∂x, ∂∕∂y, and ∂∕∂z, respectively. The Laplace-Fourier
equations of motion (equation 1) are obtained by transforming the
time-domain system of equations (Virieux, 1986) using the follow-
ing Laplace-Fourier transform:

gðsÞ ¼
Z

∞

0

gðtÞe−stdt; (2)

where gðtÞ includes the functions vxðtÞ, vyðtÞ, vzðtÞ, and PðtÞ.
For the numerical solution of equation 1, we used second- and

fourth-order finite-difference schemes with 7 and 13 point stencils,
respectively (Petrov and Newman, 2012). This system of equations
must be augmented with boundary conditions. In the case of infinite
media, the nonreflecting condition for wavefield components is ap-
plied at the boundaries of region Ω. We used the perfectly matched
layer boundary conditions (Hastings et al., 1996; Kim and Pasciak,
2010). However, at a free-surface boundary, one needs to incorpo-
rate the following boundary:

P ¼ 0: (3)

In simple topography settings, in which the free surface is a flat
plane that coincides with the top plane of the finite-difference grid,
this boundary condition may be realized without any staircasing
error (Graves, 1996; Gottschammer and Olsen, 2001). However,
when the free surface has a more complicated geometric structure,
incorporating the free-surface boundary condition becomes more
challenging because the finite-difference stencil will cross over
the free surface as illustrated in Figure 1. In this setting, some algo-
rithms perform adaptation of the finite-difference grid to the free
surface (Hestholm, 1999; Hestholm and Ruud, 2000; Zhang and
Chen, 2006; Zhang et al., 2012) or to construct the values of the
wavefield on the exterior nodes if one wishes to keep the grid intact
(Kreiss and Petersson, 2006; Lombard et al., 2008; Li et al., 2010).

EMBEDDED BOUNDARY METHOD

We consider a case in which the free surface is immersed within a
regular finite-difference grid and assume a homogeneous media
around the boundary. The free surface can be defined by the equation

Zs ¼ fðx; yÞ: (4)

We define grid nodes as interior nodes if they are inside the domainΩ
and underneath the free surface, as shown in Figure 1. Nodes outside
the domain of interest, i.e., above the free surface, are defined as
exterior nodes, and points on the free-surface boundary are defined
as boundary points. The ghost nodes are defined to be grid points
outside the domain of interest but still being requested by stencils.
For example, the second-order finite-difference scheme with seven
stencil points requires only one layer of nodes above the surface
(Figure 1).
With the above definitions, the problem of free-surface boundary

treatment becomes the problem of updating the wavefield at the
ghost nodes such that the wavefield at boundary points is forced
to be zero according to the boundary condition in equation 3.
Because we know the exact values of the pressure at the boundary,

Figure 1. Smooth curved free surface on a uniform Cartesian grid
for a second-order finite-difference stencil. The white squares de-
note the ghost nodes required by the stencil, the black squares de-
note the stencil interior grid nodes, and the circles denote the points
on the free surface that are boundary points.
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the boundary condition may be realized as extrapolation or interpo-
lation of the wavefield from the interior nodes to the ghost nodes via
the boundary points. This method is called the embedded boundary
method (Kreiss and Petersson, 2006; Lombard et al., 2008; Li
et al., 2010).
The value of the pressure at the ghost nodes may be defined by

the method of images (Griffiths, 2005; Jackson, 2007). For each
ghost node Pg, we define a ghost mirror point Pg;m below the sur-
face inside the medium, where

Pg ¼ −Pg;m: (5)

The position and value of the ghost mirror Pg;m is defined by the
distance from the surface and the surface form. For planar or spheri-
cal boundaries, the method of images ensures the realization of an
exact boundary condition (Morse and Feshbach, 1954). Thus, it is
widely used for the free-surface boundary condition with a flat sur-
face (Levander, 1988; Graves, 1996). For an arbitrary boundary, it
becomes an approximation. However, when the distance between
the ghost node and the boundary is essentially smaller than the
wavelength and the radius of the curvature, the boundary may
be considered as locally planar or spherical. Because realistic topog-
raphy always has some curvature, we can assume the surface near
each ghost node is part of some sphere. This assumption is more
general than the planar form because it allows us to include the cur-
vature in the definition of the position and value of the ghost mirror
Pg;m. Furthermore, the spherical form goes to the planar form when
the radius of the curvature goes to infinity. Nodes above the ghost
nodes that are not required by stencils are set to zero.

Ghost mirrors location

To locate the position of the ghost mirror, we find the closest
distance between each ghost node at ðxg; yg; zgÞ and its interpolated
surface fðx; yÞ (see Appendix A). By considering the normal vector
from the surface and the vector between the closest point on the
surface and ghost node, we get the following system of nonlinear
equations:

�
x − xg þ ∂xfðx; yÞ½fðx; yÞ − zg� ¼ 0

y − yg þ ∂yfðx; yÞ½fðx; yÞ − zg� ¼ 0:

(6)

By solving the system for x and y using the steep-
est-descent method, we attain the location of the
closest point at the surface relative to the ghost
node (Rheinboldt, 1998). According to Figure 2,
the normal is extended a distance ξR from the
closest point at the boundary into the subsurface
to locate ghost mirror Pg;m.
For a planar free surface, the distance ξR be-

tween Pg and the surface is equivalent to the dis-
tance ξ 0

R between Pg;m and the surface. However,
if the surface is curved, the two distances (ξR and
ξ 0
R) are not equal (Figure 3). Our algorithm ac-
counts for curvature of the surface and corrects
the location of the ghost mirror Pg;m by assuming
the free surface is locally spherical. Because we
know the approximated topography f, we can
find the mean radius for the curvature using

R ¼ −2
∇ · n̂

¼ 2 · ð1þ ð∂xfÞ2 þ ð∂yfÞ2Þ3∕2
ð1þ ð∂xfÞ2Þ∂yyf − 2∂xf∂yf∂xyf þ ð1þ ð∂yfÞ2Þ∂xxf

;

(7)

where n̂ is the normal to the local surface f (Spivak, 1981). For the
hill case in Figure 3a, the radius value is positive, whereas it is neg-
ative for the valley case in Figure 3b. The distance a between the
curvature origin O and ghost node Pg can be found by

a ¼
�
Rþ ξR for R > 0

jRj − ξR for R < 0
; (8)

Figure 2. The 2D y-axis slice from the 3D second-order staggered
grid. The blue line denotes the irregular surface, the black dashed
line denotes the irregular surface normal at each ghost point, the
magenta stars denote the ghost nodes, the orange squares denote
the closest point in the surface that is normal to the ghost node,
the black stars denote the ghost mirrors, the green and red triangles
denote the known acoustic pressures, and ξR, ξD, and ξI are the
relative distances. The nodes have 50 m grid spacing.

a) b)

Figure 3. Method of images implementation. The red dot denotes the location of
the ghost node, the green dot denotes the updated location of the ghost mirror due
to the curved surface, R denotes the radius of the curvature, ξR is the distance between
the ghost node Pg and the surface, ξ 0

R is the distance between the ghost mirror Pg;m
and the surface, a is the distance between the curvature origin O and the ghost node
Pg, and b is the distance between the curvature origin O and the ghost mirror Pg;m.
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the distance ξ 0
R between the ghost mirror Pg;m and the surface is

found using

ξ 0
R ¼ R

�
1 −

jRj
a

�
; (9)

and the ghost node Pg is related to the ghost mirror Pg;m by�
a
jRj

�
Pg;m; (10)

where R is the radius of the curvature. For planar and curved
surfaces, the acoustic pressure value at the ghost mirror Pg;m is
necessary.

Second-order scheme implementation

To calculate the acoustic pressure at the ghost mirror points Pg;m,
we consider interpolation and extrapolation methods. Thus, the
acoustic pressure at the first layer PI and the acoustic pressure
at the second layer PII below the surface are needed (see Figure 2).
We know the acoustic pressure at the surface to be zero, and the
acoustic pressure at PI and PII can be approximated using bilinear
interpolation. We either use linear extrapolation, quadratic interpo-
lation, or a hybrid method to calculate acoustic pressures at ghost
mirror points Pg;m and hence their corresponding ghost nodes Pg

(see Figure 2).
Quadratic interpolation needs three points to determine the ghost

mirror acoustic pressure Pg;m. Figure 4 shows that to approximate
the acoustic pressure of ghost nodes Pg, we use Lagrange quadratic
interpolation on values 0, PI , and PII at locations 0, ξD,
and ξD þ ξI (Li et al., 2010). To improve the accuracy of the quad-
ratic interpolation, we use linear extrapolation.
Linear extrapolation is considered to reduce perturbations caused

by points further below the surface such as PII . It needs two points
to locally determine each ghost mirror point acoustic pressure Pg;m,
which is located a distance ξR from the surface. Following from
Figure 2, Figure 4 illustrates the linear extrapolation method. Thus,
the ghost node’s acoustic pressure Pg can be found using linear
Lagrange extrapolation on values 0, and PI at positions 0 and
ξD. We call it extrapolation because the distance ξR can be larger
than ξD.

The hybrid method is a combination of the two previous meth-
ods. Depending on the location of the ghost mirror Pg;m (Figure 2),
grid spacing Δz, and a tuning coefficient α, it independently deter-
mines whether to use linear extrapolation or quadratic interpolation
for each ghost node. Algorithm 1 illustrates the hybrid method. The
hybrid method uses linear extrapolation if the ghost mirror is be-
tween the surface and PI . However, if the ghost mirror is located
between PI and PII , it decides whether to use linear extrapolation or
quadratic interpolation depending on α, which ranges between zero
and one. From the geometry in Figure 2, the maximum distance
between PI and ghost mirror is Δz if the mirror is located between
PI and PII . The hybrid method uses linear extrapolation if the ghost
mirror is located between PI and PI þ α � Δz; otherwise, if it falls
between PI þ α � Δz and PII , it uses quadratic interpolation.

Fourth-order scheme implementation

Due to the accuracy demands of the fourth-order finite-difference
schemes, the acoustic-wave equation solution requires two layers of
ghost nodes Pg above the surface. The first layer of ghost nodes is
approximated using the hybrid method. The second layer of ghost
nodes is located above the first layer. The acoustic pressures in the
second layer are approximated using quadratic interpolation. Thus,
three points are used to calculate the acoustic pressure at each ghost
mirror Pg;m in the second layer. The first two points are PI and PII ,
which are found using bilinear interpolation. The third point PIII

arises from extending the normal line further in the subsurface. Sim-
ilarly, we use bilinear interpolation to approximate PIII. We also
experimented using four points by including the zero acoustic pres-
sure at the surface in addition to the three acoustic pressures PI , PII ,
and PIII. This will result in a Lagrange cubic interpolation. These
two methods will be called the two-layer hybrid quadratic and cubic
methods. We also experimented with only one hybrid layer by set-
ting the second layer above the surface to zero. We call this the one-
layer hybrid method.

RESULTS

We perform two simulations to test our embedded boundary
methods for the second- and fourth-order finite-difference schemes
(Petrov and Newman, 2012). The first simulation is done by solving

Figure 4. Linear extrapolation (the blue line) and quadratic inter-
polation (the red line) are used to approximate the ghost node acous-
tic pressure Pg.

Algorithm 1. Hybrid method used to determine whether to
use linear extrapolation or quadratic interpolation for each
ghost node.

1. function Hybrid ðα;Δz; ξR; ξDÞ
Input: 0 ≤ α ≤ 1, and real values Δz, ξR, and ξD
Output: method

2. if ξR > ðξD þ α · ΔzÞ then
3. method = quadratic interpolation;

4. return method;

5. else

6. method = linear extrapolation;

7. return method;

8. end
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the acoustic-wave equation in a homogeneous model with oblique
planar topography. To measure the accuracy, we rotate the solution
and compare the results with the analytical solution for a flat free-
surface model (Aki and Richards, 2002; Pujol, 2003). The relative
error e1 for the oblique planar topography is defined by

e1ðr∂ΩÞ ¼
jjPsimðr∂ΩÞj − jPAðr∂ΩÞjj

jPAðr∂ΩÞj
× 0100; (11)

where r∂Ω ∈ a surface ∂Ω that is parallel to the free surface, Psim is
the simulation result, and PA is the analytical solution.
The second simulation addresses a homogeneous model with hill

topography. Unlike the first simulation, there is no analytical sol-
ution for this case, and the relative error e2 is calculated relative to
the maximum norm in the region Ω and is given by

e2ðr∂ΩÞ ¼
jPsimðr∂ΩÞj

max
r∈Ω

jPsimðrΩÞj
× 100; (12)

where rΩ ∈ region Ω and the denominator de-
notes the maximum value in the region.

Oblique planar surface

In the oblique planar-surface case, we have a
sloping surface in which we can rotate its solu-
tion to compare it with the analytical solution
(see Figure 5). The surface is sloping 42° clock-
wise from the horizontal. The minimum distance
between the Ricker-wavelet source and the slop-
ing surface is 890 m. The complex frequency of
the source is s ¼ 1þ 2i. We use the relative error
e1 and average error he1i to measure the accuracy
of the oblique planar surface simulation.
For the second-order scheme, we will compare

a finite-difference solution that includes staircas-
ing of topography in the simulation, as well as
the embedded boundary conditions, based on lin-
ear extrapolation, quadratic interpolation, and the
hybrid method with α ¼ 0.95. We use a high
tuning parameter α to bias the hybrid method
to linear extrapolation. Most ghost mirror points
are located closer to PI than PII , and thus linear
extrapolation better approximates the ghost mir-
ror pressure Pg;m than quadratic interpolation.
For this comparison, we will implement a homo-
geneous media with P-wave velocity VP of
2250 m/s, density ρ of 2300kg∕m3, and grid
spacing of 50 m. Figure 6a shows the relative
error in pressure for the different simulation
methods. All three embedded boundary methods
provide accurate and similar results for the
oblique planar surface relative to the true analyti-
cal solution. In general, the embedded boundary
methods contain an average error of 1.3%,
whereas the staircase methods have an average
error of 28.5% (Table 1).
To ensure that our method is continuous and

differentiable, we study the pressure gradient.

The results of the normal gradient (normal velocity component) will
be specifically illustrated because geophysical techniques measure
normal velocity. Figure 6b and 6c shows that the average normal-
velocity error for our embedded boundary methods is approxi-
mately 1% with respect to change in distance and depth.
Bohlen and Saenger (2006) conclude that to model topography

with a staircase method, more than 60 grid points per minimum
wavelength are required in a second-order scheme to obtain accept-
able results. In Figure 7, we implemented an extreme case with ap-
proximately four points per wavelength at a frequency of 20 Hz
with damping coefficient 1ð1∕sÞ. To account for this increase in
frequency, the velocity of the model was increased from 2250
to 3250 m∕s, and the grid spacing reduced from 50 to 15 m.
The results show that our hybrid method produces results with

Figure 5. (a) The analytical free-surface case. The inline in the green is parallel to the
flat surface. (b) The oblique planar free-surface case. The inline in green is parallel to the
oblique planar surface. The grid spacing is 50 m, and the source denoted in red is 890 m
below the surface.

Table 1. The second-order finite-difference scheme for the acoustic-wave
equation in homogeneous media with mesh size 70 × 74 × 85. The source
frequency is 2 Hz with damping coefficient 1�1∕s�.

Oblique planar

Topography type Topography method Iterations Time (s) Average
error he1i (%)

Flat free surface — 980 ∼66 —
Oblique planar Staircase 951 ∼71 28.5

Oblique planar Linear extrapolation 1038 ∼57 1.3

Oblique planar Quadratic interpolation 1221 ∼66 1.4

Oblique planar Hybrid with α ¼ 0.95 1038 ∼57 1.3

Hill surface

Topography type Topography method Iterations Time (s) Average
error he2i (%)

Hill surface Staircase 1079 ∼70 5.8 × 10−2

Hill surface Linear extrapolation 13,542 ∼718 8.1 × 10−4

Hill surface Quadratic interpolation 1432 ∼80 1.4 × 10−3

Hill surface Hybrid with α ¼ 0.95 3768 ∼211 9.3 × 10−4
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an average error of approximately 3% when compared with the
analytical solution (Figure 8).
In the next numerical simulation, we demonstrate the solution of

the acoustic-wave equation more accurately with a fourth-order
finite-difference scheme. We use the same model setup as in the
second-order finite-difference scheme. The model is illustrated in
Figure 5 — it is homogeneous with P-wave velocity VP of
2250 m/s, density ρ of 2300kg∕m3, and grid spacing of 50 m.
The complex frequency of the source is s ¼ 1þ 2i. In this simu-
lation, we compare the relative error in pressure between the stair-
case one- and two-layer hybrid methods with α ¼ 0.95. As shown
in Figure 9, the two-layer method’s average error is 1.3%. The one-
layer method achieves an average accuracy of 5.4%. Similar to the
previous simulation, the average accuracy of the staircase method is
23.5% (Table 2).

Hill model

To further measure the accuracy, we test our schemes on a hill
surface. In terms of source type, source location, P-wave velocity,
and density, the same configurations will be used as in the oblique
planar simulations. As in the previous simulation, the complex fre-
quency of the source is s ¼ 1þ 2i. We use relative error e2 and
average error he2i to measure the accuracy of the hill-surface
simulation. Figure 10 illustrates the hill surface used for this

Figure 6. Error for the second-order finite-difference scheme stair-
case and embedded boundary methods relative to the true analytical
solution.

Figure 7. Absolute pressure for the second-order finite-difference
scheme true, staircase, and hybrid method solutions. The plot dem-
onstrates the solution 50 m below the surface for a frequency of
20 Hz with damping 1ð1∕sÞ.

Figure 8. Relative error e1 for the second-order finite-difference
scheme staircase and hybrid method acoustic pressure relative to
the true analytical solution. The plot demonstrates the error
50 m below the surface for a frequency of 20 Hz with damping
1ð1∕sÞ.

Figure 9. Relative error e1 for the fourth-order finite-difference
scheme staircase and embedded boundary methods relative to
the true analytical solution.
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experiment. The red lines denote profiles that will be studied in this
section.
We use the second-order finite-difference scheme to the acoustic-

wave equation. The tuning constant used for the hybrid method is
α ¼ 0.95. We first start by comparing the central line profile shown
in Figure 10a. Similar to the oblique planar simulation, all three
embedded boundary methods have two orders of magnitude im-
provement over the staircase method (Table 1). Furthermore, all
three embedded methods show approximately the same improve-
ment (see Figure 11a). But for the edge line profile (Figure 10b),
the linear extrapolation and the hybrid method provide more than
two times better accuracy compared with the quadratic interpolation
(Figure 11b and Table 1).
Spacing has been reduced for the staircase solution to demon-

strate that when this happens, the higher resolution solution con-
verges to the embedded-method solution with spacing of 50 m
(Figure 12).

To study the effectiveness of our curvature method, we stretched
the hill model to have a height of 1500 m instead of the 700 m in
Figure 10. In Figure 13, we show that when the edge-line curvature
radius is small, the error for the solution with curvature correction is
reduced by up to two times compared with the error for the solution
without the curvature correction.
In Figure 14, we implemented an extreme case with approxi-

mately four points per wavelength at frequency 20 Hz with damping
coefficient 1ð1∕sÞ. The velocity and spacing have been changed as
in the oblique planar case. The results show that our hybrid method
produces results with two orders of magnitude improvement over
the staircase method with frequency 20 Hz (Figure 15).
Now, the acoustic-wave equation is solved using a fourth-order

finite-difference scheme. We compare solutions for the central line
and edge line profiles shown in Figure 10. Contrary to the oblique-
planar model simulation, Figure 16 only shows marginal improve-
ment when using the two-layer hybrid methods over the one-layer

hybrid method (Table 2).

Solver convergence rates

Efficient convergence rates are essential for
solving the forward problem because it is the
driving engine in the solution of the inverse prob-
lem. Thus, the forward problem will be solved
many times to reach the best-fit model for the
data. Here, we study the convergence rates to de-
cide which embedded boundary method is more
computationally efficient. All the tests were con-
ducted on a 2013 MacBook Pro with a 2.4 GHz
dual-core Intel i5 processor, 3 MB shared L3
cache, and 8 GB of 1600MHz DDR3L onboard
memory. We use a Krylov subspace induced di-
mension reduction (IDR) iterative solver to solve
the forward model at interior nodes (Sonneveld
and van Gijzen, 2008). Direct solvers can also
be used for small simulations or as a precondi-
tioner for the iterative solver.
We start the first set of tests with second-order

finite-difference schemes for a homogeneous
medium. We compare between different topogra-
phies and embedded boundary methods. For the
oblique-planar surface, there is no considerable
difference in terms of number of iterations or

Figure 10. (a) Hill topography with the red line denoting the central line profile. (b) Hill topography with the red line denoting the edge line
profile. The grid spacing is 50 m in all three components, and the source is located at ðx; y; zÞ ¼ ð1200; 1200; 2600Þ m.

Table 2. The fourth-order finite-difference scheme for the acoustic-wave
equation in a homogeneous media with mesh size 70 × 74 × 85. The source
frequency is 2 Hz with damping coefficient 1�1∕s�.

Oblique planar

Topography
type

Topography method Iterations Time
(s)

Average
error he1i (%)

Flat free surface — 1328 ∼105 —
Oblique planar Staircase 1084 ∼77 23.5

Oblique planar One-layer hybrid with α ¼ 0.95 1531 ∼106 5.4

Oblique planar Two-layer hybrid quadratic
with α ¼ 0.95

12,012 ∼815 1.3

Oblique planar Two-layer hybrid cubic
with α ¼ 0.95

9590 ∼650 1.3

Hill surface

Topography
type

Topography method Iterations Time
(s)

Average
error he2i (%)

Hill surface Staircase 1395 ∼113 6.2 × 10−2

Hill surface One-layer hybrid with α ¼ 0.95 4281 ∼300 1.5 × 10−3

Hill surface Two-layer hybrid quadratic
with α ¼ 0.95

40,002 ∼2;800 1.0 × 10−3

Hill surface Two-layer hybrid cubic
with α ¼ 0.95

4745 ∼309 1.0 × 10−3
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convergence rate (Table 1). It is better to use the linear extrapolation
method because it is slightly more accurate. However, the hill
irregular surface shows a spike in the number of iterations and a
corresponding increase in time for the linear extrapolation solution
(Table 1). We have observed that the linear extrapolation takes more
time to converge when there are more ghost points closer to PII than
PI . Thus, it is more efficient to implement the hybrid method with
α ¼ 0.95. The hybrid-method results are similar in accuracy to the
linear extrapolation but have better convergence rates as shown in
Table 1. On the other hand, the quadratic interpolation is faster but
has marginally less accuracy.
Because linear extrapolation is accurate but inefficient and quad-

ratic interpolation is efficient but not as accurate, we experimented

Figure 11. Relative error e2 for the second-order finite-difference
scheme embedded boundary methods at the (a) central line shown
in Figure 10a and (b) edge line shown in Figure 10b.

Figure 12. Absolute pressure solutions for the second-order finite-
difference scheme embedded boundary methods with different
spacings for the hill model central line at 50 m below the surface.

Figure 13. Relative error e2 for the second-order finite-difference
scheme embedded boundary methods at the edge line for a stretched
hill with height 1500 m.

Figure 14. Absolute pressure for the second-order finite-difference
scheme embedded boundary methods at the central line shown in
Figure 10a at 100 m below the surface. The plot demonstrates the
solutions for a frequency of 20 Hz with damping 1ð1∕sÞ.

Figure 15. Relative error e2 for the second-order finite-difference
scheme embedded boundary methods at the (a) central line shown
in Figure 10a and (b) edge line shown in Figure 10b. The plot dem-
onstrates the error for a frequency of 20 Hz with damping 1ð1∕sÞ.
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with different tuning ratios α to find the best compromise in effi-
ciency and accuracy. In Figure 17, we show that α ¼ 0.95 provides
a good trade-off. It is accurate relative to the linear extrapolation
(α ¼ 1) and also efficient, as shown in Table 1.
We compare tests for the fourth-order finite-difference schemes

for a homogeneous medium. In these tests, we compare between the
one- and two-layer hybrid methods as shown in Table 2. For the
oblique-planar and hill surfaces, the two-layer hybrid quadratic
method is approximately 10 times slower than the one-layer hybrid
method. Despite its slightly less accurate solution, the one-layer
hybrid method is substantially more time efficient than the two-

layer hybrid quadratic method. However, using a two-layer hybrid
cubic method can reduce time inefficiencies. In fact, for the central
hill profile, the solution times for the two-layer hybrid cubic are
comparable with the one-layer hybrid method.

CONCLUSION

We report improved embedded boundary methods for 3D
acoustic seismic wave-propagation modeling when arbitrarily
free-surface topography is present. Unlike the classic staircase
method and finite-difference algorithms that use structured curvi-
linear body-fitted grids, our embedded boundary methods —
quadratic interpolation, linear extrapolation, and one- and two-
layer hybrid — use a regular Cartesian grid system, which greatly
simplifies mesh generation and omits the need to change our cur-
rent finite-difference formalizations. The free-surface boundary is
enforced at the actual surface locations through the method of
images, allowing for an accurate representation of an arbitrary
free-surface geometry. As demonstrated with numerical experi-
ments, our embedded methods significantly reduce the staircasing
error. Our results showed that the hybrid method is efficient in
terms of accuracy and performance for second-order finite differ-
ence, whereas the two-layer hybrid cubic method is more efficient
for fourth-order finite-difference implementation. These methods
are designed to choose between linear extrapolation and quadratic
interpolation according to a tolerance variable without adversely
affecting performance. We use a high tuning parameter α to bias
the hybrid method to linear extrapolation, for the increase in ac-
curacy that linear extrapolation achieves over quadratic interpola-
tion. Previous published works only take quadratic interpolation
into consideration, which makes their embedded methods dependent
on nodes further below the surface. Our results show that linear
extrapolation that depends on nodes close to the surface can produce
better results. It achieves slightly more accurate results when com-
pared with quadratic interpolation for the oblique planar surface.
For the hill irregular surface, it is about two times better than quad-
ratic interpolation. These algorithms can handle any surface topog-
raphy under a regular Cartesian coordinate system. Therefore, they
have significant potential to become a powerful part of a forward-
modeling engine used for full-waveform inversion.
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APPENDIX A

PIECEWISE FREE-SURFACE EQUATION

Using topography data points Ti;j, a piecewise quadratic topog-
raphy equation fi;jðx; yÞ is approximated. The quadratic approxi-
mation in multiple variables is given by

Figure 16. Relative error e2 for the fourth-order finite-difference
scheme embedded boundary methods at the (a) central line shown
in Figure 10a and (b) edge line profile shown in Figure 10b.

Figure 17. Relative error e2 for the second-order finite-difference
scheme hybrid method at the edge line for different tuning ratios α.
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fi;jðx; yÞ ≈ fi;jðx0; y0Þ þ ∂xfi;jðx0; y0Þðx − x0Þ
þ ∂yfi;jðx0; y0Þðy − y0Þ

þ 1

2!
½∂xxfi;jðx0; y0Þðx − x0Þ2

þ 2∂xyfi;jðx0; y0Þðx − x0Þðy − y0Þ
þ ∂yyfi;jðx0; y0Þðy − y0Þ2�; (A-1)

where fi;jðx; yÞ is the approximated topography equation for the
surface about the point ðx0; y0Þ and the symbols ∂x, ∂y, ∂xx, ∂xy,
and ∂yy, respectively, denote the partial differential operators
∂∕∂x, ∂∕∂y, ∂2∕∂x2, ∂2∕∂x∂y, and ∂2∕∂y2, respectively. Further-
more, the piecewise equation A-1 is bounded by

�
xi−1 < x < xiþ1

yi−1 < y < yiþ1:
(A-2)

where i and j are the indices of the topography nodes. Thus, xi
corresponds to i · Δx and yj corresponds to j · Δy. The coefficients
of equation A-1 are found by the central finite-difference relation-
ships. We use topography data points to calculate the coefficients of
the equation:

∂xfi;jðx; yÞ ≈
Tiþ1;j − Ti−1;j

2Δx
;

∂yfi;jðx; yÞ ≈
Ti;jþ1 − Ti;j−1

2Δy
;

∂xxfi;jðx; yÞ ≈
Tiþ1;j − 2Ti;j þ Ti−1;j

Δx2
;

∂xyfi;jðx; yÞ ≈
Tiþ1;jþ1 − Ti−1;jþ1 − Tiþ1;j−1 þ Ti−1;j−1

4ΔxΔy
;

∂yyfi;jðx; yÞ ≈
Ti;jþ1 − 2Ti;j þ Ti;j−1

Δy2
: (A-3)
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