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SUMMARY

Wedevelop embedded boundary and discontinuousmeshmeth-
ods to handle arbirarily shaped topography and accurately sim-
ulate acoustic seismic wave propagation in Laplace-Fourier
domain. The purpose of the embedded boundary method is
to enhance accurate wave simulation near the surface and the
discontinuous mesh method is used to achieve considerable
savings in both computation time and memory savings relative
to fixed mesh schemes.

FINITE DIFFERENCE MODELING

Introduction
In acoustic seismic modeling, the objective is to describe the
propagation of waves through the earth. Here, we consider
wave propagation that is solved in the Laplace-Fourier Domain.
We start by discretizing the three-dimensional wave equation
on aCartesian grid xi, j,k = (ih, jh, kh) in space, where h > 0 is
the grid size. We let the Laplace frequency be complex-valued,
s = σ + iω, consisting of a Laplace damping factor σ and the
angular frequency ω. The solution to the forward problem is
employed using a single frequency for 3D acoustic wave simu-
lation (Hustedt et al., 2004). It is reduced from the 3D elastic
wave field simulator developed by Petrov and Newman (2012).
Most of the methods that have been developed for wave mod-
eling in the frequency domain (see Lysmer and Drake (1972);
Marfurt (1984); Pratt and Worthington (1990); Zahradník and
Urban (1984); Jo et al. (1996); Štekl and Pratt (1998); Hustedt
et al. (2004); Operto et al. (2007)) are based on solving the
acoustic wave equation by the finite-difference method: on a
uniform grid, the finite-differencemethods provide an excellent
compromise between accuracy and computational efficiency.

Governing Equations
We consider the first-order hyperbolic system in a velocity-
pressure formulation in the Laplace-Fourier domain. Let the
3D isotropic acoustic medium with density ρ and incompress-
ibility κ occupy the region Ω. The equations of motion inside
Ω are given by:

sρvx = ∂xP,

sρvy = ∂yP,

sρvz = ∂zP,

sP = κ
[
∂xvx + ∂yvy + ∂zvz

]
+ sm,

(1)

where s is the complex number given byσ+iω,σ is the Laplace
damping factor, ω is the angular frequency, and i =

√−1. The
velocities vx , vy and vz are the velocity wavefield components,
P is the acoustic pressure, m is seismic moment density tensor,
and the symbols ∂x , ∂y , and ∂z denote the partial differential
operators ∂

∂x ,
∂
∂y , and

∂
∂z , respectively. The Laplace-Fourier

equations of motion (equation 1) are obtained by transforming
the time-domain system of equations (Virieux, 1986) using the
following Laplace-Fourier transform:

g(s) =
∫ ∞

0
g(t)e−stdt. (2)

where g(t) includes the functions vx (t), vy (t), vz (t), and P(t).

For the numerical solution of equation 1, we used second and
fourth order finite-difference schemes with 7 and 13 point sten-
cils, respectively. This system of equations must be augmented
with boundary conditions. In the case of infinite media, the
non-reflecting condition for wavefield components is applied
at the boundaries of region Ω. We used the perfectly matched
layer (PML) boundary conditions (Hastings et al., 1996; Kim
and Pasciak, 2010). However, at a free-surface boundary, one
needs to incorporate the following boundary:

P = 0. (3)

EMBEDDED BOUNDARY METHOD

Introduction
Special attention to the numerical treatment of the free-surface
boundary for topography is deserved because it does not follow
naturally from a Cartesian grid. For acoustic forward model-
ing, second-order finite-difference methods do not implicitly
satisfy the free-surface condition as is the case with finite-
element methods. Accurately implementing the free-surface
condition on an irregular interface is difficult due to the non-
local nature of the finite-difference schemes. It implies that
acoustic velocities above the free-surface are required to com-
pute the pressure at or immediately below the surface (Fichtner,
2011).

In this paper, we describe an embedded boundary method for
the three-dimensional acoustic wave equation with irregular
free-surface boundary on a Cartesian grid. By computing
pressure on either sides of the interface, we can satisfy a zero
acoustic pressure at the free surface, yielding superior results
compared to conventional implementations that model topog-
raphy as a staircase approximation. Bohlen and Saenger (2006)
concluded that to model topography with a staircase method,
more than 60 grid points per minimumwavelength are required
in a second-order scheme to obtain acceptable results.

Theory
In simple topography settings, where the free surface is a flat
plane that coincides with the top plane of the finite-difference
grid, the free-surface boundary conditionmay be realized with-
out staircasing error (Graves, 1996; Gottschammer and Olsen,
2001). However, when the free surface has a more com-
plicated geometric structure, incorporating the free-surface
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3D LF acoustic wave simulations using discontinuous FD meshes with embedded boundaries

Figure 1: Smooth curved free surface on a uniform Cartesian
grid for a second-order finite-difference stencil. White squares
denote ghost nodes required by the stencil. Black squares
denote the stencil interior grid nodes. Circles denote points on
the free-surface that are boundary points.

boundary condition becomes more challenging because the
finite-difference stencil will cross over the free surface as illus-
trated in Figure 1.

We consider a case where the free surface is immersed within a
regular finite-difference grid and assume a homogeneousmedia
around the boundary. The free surface can be defined by the
equation:

Zs = f (x, y). (4)
We define grid nodes as interior nodes if they are inside the
domain Ω and underneath the free-surface, as shown in Fig-
ure 1. Nodes outside the domain of interest, i.e., above the
free surface, are defined as exterior nodes, and points on the
free-surface boundary are defined as boundary points. The
ghost nodes are defined to be grid points outside the domain of
interest but still being requested by stencils. For example, the
second-order finite-difference scheme with seven stencil points
requires only one layer of nodes above the surface (Figure 1).

With the above definitions, the problem of free-surface bound-
ary treatment becomes the problem of updating the wavefield
at the ghost nodes such that the wavefield at boundary points
is forced to be zero according to the boundary condition in
equation 3. Because we know the exact values of the pressure
at the boundary, the boundary condition may be realized as
extrapolation or interpolation of the wavefield from the interior
nodes to the ghost nodes via the boundary points.

The value of the pressure at the ghost nodes may be defined by
the method of images (Jackson, 2007; Griffiths, 2005):

Pg = −Pg,m. (5)

For each ghost node Pg, we define a ghost mirror point Pg,m

inside the surface medium. For planar or spherical boundaries,
the relationship ensures the boundary condition is exact (Morse
and Feshbach, 1954). For an arbitrary boundary, it becomes
an approximation. However, when the distance between the
ghost node and the boundary is small (about one or two grid
spacings), the boundary may be considered as locally planar.
In this case, we can expect that equation 5 enforces equation 3
with good accuracy. Nodes above the ghost nodes that are not
required by stencils are set to zero.

Ghost mirrors location
To locate the position of the ghost mirror, we find the closest
distance between each ghost node at (xg, yg, zg) and its in-
terpolated surface f (x, y). By considering the normal vector
from the surface and the vector between the closest point on
the surface and ghost node, we get the following system of
non-linear equations:

{
x − xg + ∂x f (x, y)

[
f (x, y) − zg

]
= 0

y − yg + ∂y f (x, y)
[

f (x, y) − zg
]
= 0.

(6)

By solving the system for x and y using the steepest-descent
method, we attain the location of the closest point at the surface
relative to the ghost node.

For a planar free surface, the distance ξR between Pg and the
surface is equivalent to the distance ξ′R between Pg,m and the
surface. However, if the surface is curved, the two distances (ξR
and ξ′R) are not equal (see Figure 2). Our algorithm accounts
for curvature of the surface and corrects the location of the
ghost mirror Pg,m by assuming the free surface is spherical.
Since we know the approximated topography f , we can find
the mean radius for the curvature using:

R =

∣∣∣∣
−2
∇ · n̂

∣∣∣∣

=

∣∣∣∣∣∣∣

2 ·
(

1 + (∂x f )2 + (∂y f )2
)3/2

(1 + (∂x f )2)∂yy f − 2∂x f ∂y f ∂xy f + (1 + (∂y f )2)∂xx f

∣∣∣∣∣∣∣
,

(7)

where n̂ is the normal to the local surface f (Spivak, 1981).
Hence, ξ′R can be found by:

ξ
′
R = R(1 − R

a
), (8)

and the ghost node Pg is related to the ghost mirror Pg,m by:

Pg = −
( a

R

)
Pg,m, (9)

where R is the radius of the curvature and a is the distance
between the curvature origin and ghost node Pg. Assuming the
surface is curved produces marginally better results compared
to assuming a planar surface.

DISCONTINUOUS MESH METHOD

Theory
In typical seismic models, the velocity and density tends to
increase with depth. Thus, small cell sizes can be used at the
top and and larger cell sizes can be used at deeper regions
of the model. This issue can be partly addressed by varying
the vertical cell sizes (∆z) with depth. However, lateral cell
sizes (∆x and ∆y) are still constrained by the global minimum
velocity (Pasalic et al., 2010).

We make x, y and z meshing to be discontinuous to take ad-
vantage of variations in velocity. Our approach divides the
model into a number of regions, separated by horizontal planes
(Figure 3). Within each region, ∆x, ∆y, and ∆z are uniform
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3D LF acoustic wave simulations using discontinuous FD meshes with embedded boundaries

Pg

Pg,m

Pg,m

Surface

ξ
R

ξ
R
’

R

Figure 2: Method of images implementation: Pg denotes the
location of the ghost node, Pg,m denotes the updated location
of the ghost mirror due to the curved surface, and R denotes
the radius of the curvature.

and equal; however, they vary from region to region. In this
way, discretization becomes a discontinuous function of depth.

Communication across region interfaces
Within each discontinuous region, the wave propagation cal-
culations can be performed as for the uniform mesh. However,
we clearly need to have some communication across the region
interfaces (Figure 3). This can be done by simple trilinear
interpolation across the relevant acoustic pressure values from
one region to another. Hence, using finite difference, the wave
propagation in Laplace-Fourier domain can be approximated
by


 0

.

.

.

0
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· · ·

. . .

. . .

A2

A1,2

0

An−1,n−2

. . .
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0

An,n−1

An−1

. . .

. . .

· · ·

An

An−1,n

0

.

.

.

0 





Pn

.

.

.

P1

 =




Fn

.

.

.

F1

 (10)

where Ai is the forward modeling operator for region i, Ai, j is
the interpolation operator from region j to region i, and Pi and
Fi are the acoustic pressure and source function for region i,
respectively.

The proposed discontinuous mesh finite-difference scheme is
a flexible technique which brings significant savings in com-
putational effort and memory requirements. However, certain
constraints must be observed. The most important constraint
is the number of communication layers across the region in-
terfaces. For an N-th-order-finite-difference scheme, the com-
munication will occur over 2N layers (planes for 3-D case) in
z-direction to ensure minumum reflection from the interface.

Fine Mesh

Coarse Mesh

z

Figure 3: Communication between a fine and coarse mesh for
second-order finite difference scheme. The interface is shown
as a horizontal line.

NUMERICAL TESTS

Two experiments are performed to test the embedded bound-
ary and discontinuous mesh methods on 3-D homogeneous
velocity models. For the first experiment, we use second-order
finite-difference embedded boundary scheme to test our embed-
ded boundary method on the hill surface depicted in Figure 4.
We compare a profile 50 m below the central line profile and
implement a homogeneous media with velocity of 2250 m/s,
density of 2300 kg/m3, and uniform grid spacing of 50 m.
The source is the Ricker-wavelet with a frequency of 2 Hz and
damping 1 1

s and is located at (x, y, z) = (1200, 1200, 2600) m.
For this experiment, spacing has been reduced for the staircase
solution to demonstrate that when spacing is reduced for the
staircase method, the higher resolution solution converges to
the embedded boundary method solution with spacing 50 m
(Figure 5).

The second experiment is performed on homogeneous velocity
model, with a velocity of 5000 m/s. The excitation is applied
20 m below and normal to the 10◦ sloping free-surface. Mesh
spacing discontinuously increases with depth in such a way as
to ensure a minimum of 10 points per shortest wavelength. A
Ricker wavelet with a frequency of 20 Hz and damping 1 1

s is
used as the source waveform. Observation points are placed 5
m below and normal to the sloping free-surface. The situation
is depicted in Figure 6.

In the experiment, the discontinuous mesh with embedded
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3D LF acoustic wave simulations using discontinuous FD meshes with embedded boundaries

x(m)y(m)

z(
m
)

Figure 4: Hill topography with black line denoting central line
profile. The grid spacing is 50 m in all three components and
the source is located at (x, y, z) = (1200, 1200, 2600)m.

���������

Figure 5: Absolute pressure solutions for second-order finite-
difference scheme staircase with different cell sizes and em-
bedded boundary methods for the hill model central line at 50
m below the surface.

boundary method is applied on a second-order finite-difference
scheme to calculate the pressure response at observation points.
The acoustic pressure values corresponding to observation
points are shown in Figure 7. The acoustic pressure values
obtained by the analytical solution and discontinuous mesh
with embedded boundary are compared. Overall, the mean
error for the method is less than 5% (Figure 8).

CONCLUSIONS

We presented a discontinuous mesh with embedded boundary
finite-difference scheme for solution of the Laplace-Fourier
acoustic wave equation. Our embedded boundary method
uses a regular Cartesian grid system, which greatly simpli-
fies mesh generation and omits the need to change our current
finite-difference formalizations. The free-surface boundary is
enforced at actual surface locations through the method of im-
ages, allowing for an accurate representation of an arbitrary
free-surface geometry. The discontinuous mesh method is
ideal for use in acoustic modeling with topography and full
waveform inversion since it leads to considerable savings in
both computation time and memory requirements. These sav-
ings are primarly due to a reduction in the total number of
finite-difference cells.

Region 1Region 1

Region 2Region 2

Region

Boundary

Region

Boundary

Excitation PointExcitation Point

Observation PointsObservation Points

Free-surfaceFree-surface

θθ

∆ x1∆ x1

∆ x2∆ x2

∆ z1∆ z1

∆ z2∆ z2

Figure 6: Mesh consisting of a sloping free-surface and two
discontinuous regions. The near-surface observation points are
used for calculation of error caused by the embedded boundary
and discontinuous mesh methods for a homogeneous model.
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Figure 7: Absolute pressure for second-order finite-difference
scheme at the observation points in Figure 6. The plot demon-
strates the solution for a frequency of 20 Hz with damping 1 1

s
relative to the analytical solution.
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Figure 8: Error for second-order finite-difference scheme em-
bedded boundary with discontinuous mesh relative to the ana-
lytical solution.
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